## MARK SCHEME for the May/June 2015 series

## **4037 ADDITIONAL MATHEMATICS**

4037/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | Mark Scheme                       | Syllabus | Paper |
|--------|-----------------------------------|----------|-------|
|        | Cambridge O Level – May/June 2015 | 4037     | 21    |

## Abbreviations

| awrt | answers which round to     |
|------|----------------------------|
| cao  | correct answer only        |
| dep  | dependent                  |
| FT   | follow through after error |
| isw  | ignore subsequent working  |
| oe   | or equivalent              |
| rot  | rounded or truncated       |
| SC   | Special Case               |
| soi  | seen or implied            |
| www  | without wrong working      |

| 1 | (a)     | $\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3}$ isw                                                                                           | M1<br>A1       | Can use other interim bases if all correct<br>but M1 when in base 3 only<br>NOT $\log_3 x \div 3$                            |
|---|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|
|   | (b)     | $\log_a 15 - \log_a 3 = \log_a 5 \text{ soi}$                                                                                                   | M1             |                                                                                                                              |
|   |         | $\log_a 5^3$ or $\log_a a$                                                                                                                      | M1             |                                                                                                                              |
|   |         | $\log_a y = \log_a 125a \implies y = 125a$                                                                                                      | A1             |                                                                                                                              |
| 2 | (a)     | [f(x) = ]2x - 4 and $[f(x) = ]-2x + 4$                                                                                                          | B1,B1          | Condone $y = \dots$                                                                                                          |
|   | (b)     |                                                                                                                                                 | B1<br>B1<br>B1 | correct shape;<br>y intercept marked or seen nearby;<br>intent to tend to $y = 3$ (i.e. not tending to<br>or cutting x-axis) |
| 3 | (a)     | $\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19\\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5\\ 15 & -10 & 25 \end{bmatrix}$ | M1             |                                                                                                                              |
|   |         | $\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$                                                                           | A1             | Integer values                                                                                                               |
|   | (b) (i) | The (total) value of the stock in <b>each</b> of the 3 shops                                                                                    | B1             | Must have "each" oe                                                                                                          |
|   | (ii)    | The <b>total</b> value of the stock in all 3 shops                                                                                              | B1             | Must have "total" oe                                                                                                         |

Page 3Mark SchemeSyllabusPaperCambridge O Level – May/June 2015403721

| 4 | (i)     | $\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right) \text{ oe}$                                                                              | M1       | $\frac{PT}{\sin\frac{3\pi}{8}} = \frac{8}{\sin\frac{\pi}{8}}$ |
|---|---------|------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------|
|   |         | <i>PT</i> =19.3                                                                                                                          | A1       | 8 8<br>awrt 19.3                                              |
|   | (ii)    | $\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)                                                                                 | M1       | or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$             |
|   |         | $8 \tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector } \text{ oe } (=154.5-`75.4`)$                                         | M1       | $8 \times their PT - their sector$                            |
|   |         | 79.1                                                                                                                                     | A1       | awrt 79.1                                                     |
|   | (iii)   | $8\left(\frac{3\pi}{4}\right)$ oe (18.8)                                                                                                 | M1       |                                                               |
|   |         | $\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$                                                                           | A1       | Accept 57.4 to 57.5                                           |
| 5 | (a)     | Permutation because the order matters oe                                                                                                 | B1       |                                                               |
|   | (b) (i) | ${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$<br>55                                                                                          | M1<br>A1 | 3 correct terms added                                         |
|   | (ii)    | $^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$<br>420                                                              | M1<br>A1 | 4 correct terms multiplied                                    |
|   | (iii)   | ${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$                                                  | M1       | for either correct product                                    |
|   |         | summation<br>70                                                                                                                          | M1<br>A1 | adding two correct products                                   |
|   |         |                                                                                                                                          | AI       | If 0 scored, then SC1for 1,1,1,0 and 0,0,2,1 seen             |
| 6 | (i)     | $2t^2 - 14t + 12 = 0$                                                                                                                    | M1       | Can use formula, etc.                                         |
|   |         | (t-1)(t-6) oe<br>(t=) 1                                                                                                                  | A1       | If $t = 1$ with no working, then M1A1                         |
|   | (ii)    | $\int (2t^2 - 14t + 12) \mathrm{d}t$                                                                                                     | M1       |                                                               |
|   |         | $2t^{2} - 14t + 12 = 0$<br>(t-1)(t-6) oe<br>(t=) 1<br>$\int (2t^{2} - 14t + 12) dt$<br>(s=) $\frac{2t^{3}}{3} - \frac{14t^{2}}{2} + 12t$ | A2,1,0   | -1 for each error or for $+c$ left in or limits introduced    |
|   | (iii)   | $(a=)\frac{dv}{dt}  (4t-14)$<br>[4(3)-14=]-2 cao                                                                                         | M1       |                                                               |
|   |         | at<br>[4(3) - 14 =] -2 cao                                                                                                               | A1       |                                                               |

|   | Page 4  | Mark Scheme                                                                                                                  |       | Syllabus Paper                                                                                     |
|---|---------|------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------|
|   |         | Cambridge O Level – May/June 2015                                                                                            |       | 4037 21                                                                                            |
| _ |         |                                                                                                                              | 54    |                                                                                                    |
| 7 | (a)     | $AB = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a})$ or                                                           | B1    | Any correct simplified vector                                                                      |
|   |         | $\overline{BC} = 24\mathbf{b} - 3\mathbf{a} - 15\mathbf{b} = 3(3\mathbf{b} - \mathbf{a})$ or                                 | B1    | Any second simplified vector                                                                       |
|   |         | $\overline{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$                                     |       |                                                                                                    |
|   |         | Comment: e.g. the vectors are scalar multiples of each other AND they have a common point ( $A$ , $B$ or $C$ as appropriate) | B1dep | Dep on both B marks being awarded.                                                                 |
|   | (b) (i) | 2 <b>i</b> + 11 <b>j</b> soi                                                                                                 | B1    |                                                                                                    |
|   |         | $\Rightarrow \sqrt{2^2 + 11^2}$                                                                                              |       |                                                                                                    |
|   |         | $\sqrt{125}$ or $5\sqrt{5}$ or 11.2 (3 s.f.) or better)                                                                      | B1fT  | ft <i>their</i> $2\mathbf{i} + 11\mathbf{j}$ (not $\overrightarrow{OP}$ or $\overrightarrow{OQ}$ ) |
|   |         |                                                                                                                              | DIII  | It their $2\mathbf{i} + 11\mathbf{j}$ (not OF of $OQ$ )                                            |
|   | (ii)    | $\frac{1}{2}$ (2i + 11i) isw                                                                                                 | B1fT  | ft <i>their</i> answers from (i)                                                                   |
|   | (11)    | $\frac{1}{5\sqrt{5}} (2\mathbf{i} + 11\mathbf{j}) \text{ isw}$                                                               | DIII  |                                                                                                    |
|   |         | i - 4i + 3i + 7i $2i + 11i$                                                                                                  |       |                                                                                                    |
|   | (iii)   | $\frac{\mathbf{i}-4\mathbf{j}+3\mathbf{i}+7\mathbf{j}}{2}$ or $\mathbf{i}-4\mathbf{j}+\frac{2\mathbf{i}+11\mathbf{j}}{2}$ or | M1    |                                                                                                    |
|   |         | $3\mathbf{i}+7\mathbf{j}-\frac{2\mathbf{i}+11\mathbf{j}}{2}$                                                                 |       |                                                                                                    |
|   |         | $3\mathbf{l} + 7\mathbf{j} - \frac{1}{2}$                                                                                    |       |                                                                                                    |
|   |         | 2 <b>i</b> +1.5 <b>j</b>                                                                                                     | A1    |                                                                                                    |
| 8 | (a) (i) | $ke^{4x+3}$ (+ <i>c</i> ) oe                                                                                                 | M1    | any constant, non-zero k                                                                           |
|   |         | $k = \frac{1}{4}$ oe                                                                                                         | A1    |                                                                                                    |
|   |         | 4                                                                                                                            | 711   |                                                                                                    |
|   |         | 1 (4(3)+3 4(25)+3)                                                                                                           | 514   |                                                                                                    |
|   | (ii)    | $\frac{1}{4} \left( e^{4(3)+3} - e^{4(2.5)+3} \right) \text{ or better}$                                                     | DM1   | ft <i>their</i> integral attempt                                                                   |
|   |         | 706650.99 = 707000 to 3 sf or better                                                                                         | A1    | Account $\frac{1}{(a^{15} a^{13})}$                                                                |
|   |         | 706630.99 = 707000 to 3 si or better                                                                                         | AI    | Accept $\frac{1}{4} \left( e^{15} - e^{13} \right)$                                                |
|   |         | $(\mathbf{r})$                                                                                                               |       |                                                                                                    |
|   | (b) (i) | $k\sin\left(\frac{x}{3}\right) (+c)$<br>k = 3                                                                                | M1    | any constant, non-zero $k$                                                                         |
|   |         | k=3                                                                                                                          | A1    |                                                                                                    |
|   |         |                                                                                                                              |       |                                                                                                    |
|   | (ii)    | $3\sin\left(\frac{\pi}{6}\times\frac{1}{3}\right)-3\sin(0)$                                                                  | DM1   | Dep on <i>their</i> integral attempt in sin;                                                       |
|   |         | (0,3)                                                                                                                        |       | condone omission of lower limit                                                                    |
|   |         | 0.520944 = 0.521 to 3 sf or better                                                                                           | A1    | Accept $3\sin\left(\frac{\pi}{18}\right)$                                                          |
|   |         |                                                                                                                              |       | (18)                                                                                               |
|   | (c)     | $\int (x^{-2} + 2 + x^2) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$                                                        | B1    | Europeda - accent unainer 11C - 4                                                                  |
|   |         | $\int (x^{-} + 2 + x^{-}) dx = \frac{-1}{-1} + 2x + \frac{-1}{3}$                                                            | M1    | Expands – accept unsimplified integration of <i>their</i> 3 term expansion                         |
|   |         |                                                                                                                              | Al    | Fully correct                                                                                      |
|   |         | + c                                                                                                                          | B1    | +c                                                                                                 |

|    | Page 5  | Mark Scheme                                                                                         |                | Syllabus Paper                                                                                                                                        |
|----|---------|-----------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         | Cambridge O Level – May/Jur                                                                         | 4037 21        |                                                                                                                                                       |
| 9  | (a)     | $(4x-1)(x+5) [\le 0]$                                                                               | M1             | Solves quadratic                                                                                                                                      |
|    |         | critical values $\frac{1}{4}$ and -5 soi                                                            | A1             |                                                                                                                                                       |
|    |         | $-5 \leqslant x \leqslant \frac{1}{4}$                                                              | A1             | Accept: $\left[-5, \frac{1}{4}\right]$ ; $-5 \le x$ AND $x \le 0.25$                                                                                  |
|    | (b) (i) | $(x+4)^2 - 25$ or $a = 4$ and $b = -25$                                                             | B1, B1         |                                                                                                                                                       |
|    | (ii)    | (Greatest value =) 25<br>x = -4                                                                     | B1ft<br>B1ft   | Must be clear                                                                                                                                         |
|    | (iii)   |                                                                                                     | B1<br>B1       | Correct shape with maximum in second<br>quadrant and crossing positive and<br>negative axes correctly<br>All 3 intercepts correctly shown on<br>graph |
| 10 | (i)     | $\ln y = \ln(Ab^{x}) \implies \ln y = \ln A + \ln b^{x}$ $\implies \ln y = \ln A + x \ln b$         | M1<br>A1       |                                                                                                                                                       |
|    | (ii)    | $\ln A = 11.4 \Longrightarrow A = e^{iheir  11.4}$                                                  | M1             | condone misread of scale for M1 (11.2                                                                                                                 |
|    |         | $A = 90000 \text{ cao}$ $\ln b = -1$ $b = 0.4 \text{ cao}$                                          | A1<br>M1<br>A1 | only)<br>Allow awrt –1                                                                                                                                |
|    | (iii)   | $x = 2.5 \Rightarrow \ln y = 9$<br>y = e <sup>9</sup> or 8000 to 1 sf                               | M1<br>A1       | Allow awrt 8100                                                                                                                                       |
| 11 | (i)     | 7 - x, x, 6 - x oe                                                                                  | B1             |                                                                                                                                                       |
|    |         | <i>their</i> attempt at $7-x+x+6-x+16=25$ oe                                                        | M1             |                                                                                                                                                       |
|    |         | x = 4                                                                                               | A1             | Condone $x = 4$ for all 3 marks                                                                                                                       |
|    | (ii)    | 23 - y, y, 9 - y oe                                                                                 | B1             | or $n(A \cup C) = 48 - 16 = 32$                                                                                                                       |
|    |         | 48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4<br>oe soi                                       | M1             | or $32 = 30 + 15 - (their 4 + y)$<br>or $48 = (23 - y) + 3 + 16 + y + 4$<br>+ 2 + (9 - y)                                                             |
|    |         | <i>y</i> = 9                                                                                        | A1             | Condone $y = 9$ for all 3 marks                                                                                                                       |
|    | (iii)   | $n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$<br>[and so $A' \cap B' \cap C = \emptyset$ ]. | B1             | or equivalent deduction                                                                                                                               |